Yes! Our health and longevity depends on free radicals activity!
It has long been established that excessive level of reactive oxygen species (ROS) activity in human body cause many types of damage to biomolecules and cellular structures, that, in turn result in the development of a variety of pathologic states such as diabetes, cancer and aging.


     Oxygen is a poison! A startling statement, but a true one. It is, of course, also a vital necessity for us and most living creatures. This presents both a paradox and a challenge since we are obliged to live with its presence despite it posing a major threat to our lives. Our processes of metabolism in the presence of oxygen lead to the production of extremely hostile and damaging entities, molecules or fragments of molecules, which contain unpaired electrons - namely the free radicals !

oxidative stres

This process is a simple oxidation and its final effect is aging and many diseases !

oxidative stres

    Drs Elmer Cranton and James Frackelton describe them, in an article entitled 'Free Radical Pathology in Age Related Diseases' published in The Journal of Holistic Medicine (1984 6(1)) as follows: 'Every free radical has an unpaired electron in an outer orbit, causing it to be highly unstable and to react almost instantaneously with any substance in its vicinity. These reactions often cause a cascade of new free radicals in a multiplying (chain-reaction) effect.' It is such free radical activity which allows high level radiation to damage and kill, as the rays (gamma, X, ultraviolet, cosmic etc.) knock electrons out of orbiting pairs, thus producing free radicals

  Doctors Cranton and Frackelton dramatically underline the importance of dealing with free radicals:

    When free radicals in living tissues exceed safe levels, the result is cell destruction, malignant mutation, tumor growth, damage to enzymes and inflammations, which manifest clinically as age-related, chronic degenerative diseases. Each uncontrolled free radical has the potential to multiply a million-fold. But, when functioning properly, our antioxidant systems suppress excessive free radical reactions.

    They point out that the life expectancy of mammals (such as ourselves) is in direct proportion to the free radical control enzymes, like superoxide dismutase. The use of antioxidant and dietary restriction approaches would seem to be able to boost and enhance antioxidant activity, given the evidence accumulated to date. We are literally repairing the repair system (or allowing it to repair itself) when we fast or modify what is eaten in the manner suggested by Drs Weindruch and Walford's experiments. The question seems not only to be whether such repairs influence life expectancy rather than health, but also what are the best ways of achieving this end?

    Since Dr Denham Harman of the University of Nebraska first proposed that free radicals were the keys to ageing, as far back as the mid-1950s, the study of ageing has spent much time examining the possibilities of slowing down both free radical damage and ageing. Recently, however, although the theory still looks accurate in many respects, some doubts have begun to be cast on just how antioxidant activity at cellular level can be achieved. Our self-produced defense against free radicals comes in the form of substances which literally sacrifice themselves so that the rogue free radical molecules are mopped up, thus preventing their ability to latch onto electrons in healthy tissues, and damaging or altering them in the process.

                                                                                      Amazing substances
    Our bodies have evolved defensive substances such as the enzyme catalyst which can deactivate hydrogen peroxide (bleach), one of the substances our immune system uses in its own attacks on unwelcome, invading, micro-organisms. Catalase and other antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase, are also present as defenders of body tissues against oxidative processes. These enzymes are dependent upon a number of trace elements and vitamins (mainly of the B-complex group) for their function, including copper, zinc and manganese (for SOD), selenium (for glutathione peroxidase) and iron (for catalase).

    There are also non-enzyme free radical deactivators, some of which are literally consumed in their battle against radicals, including beta carotene (the precursor of vitamin A),vitamins E and C, amino acids glutathione, methionine and cysteine, and the mineral selenium which is symbiotically active with vitamin E.

                                                                                       A surprise defender
    One of the more surprising antioxidants, which we produce in our own cells, is cholesterol. This substance helps protect the cell membrane against free radical damage, as well as itself being a precursor of vitamin D. Vitamin D is formed by the body, from cholesterol in the skin, in response to radiation from sunlight (ultraviolet light). When too much vitamin D is formed in some tissues this attracts the deposition of calcium into cells in the region, in turn interfering with normal cell transportation functions and energy production.

    The health benefits which have been seen as a result of reducing cholesterol in the diet seem to be a result of a coincidental reduction in fat intake, which reduces free radical potential (fats peroxidize easily under free radical attack.) However, use of drugs which reduce cholesterol levels in the blood (nine-tenths of which is self-produced rather than result of the food we eat) have had a history of side-effects, mainly because of the failure to recognize the protection cholesterol gives us as an antioxidant.

   Another extremely powerful antioxidant, universally present in the system, is uric acid, which, although toxic in excess, is easily metabolized by the body if adequate nutritional levels of vitamin C are present.

    However, as it is lately published all over the World, mostly by Japanese scientists and researchers, the ideal and most effective scavenger of free radicals is Active Hydrogen! The surprise is, that active hydrogen may be produced by some mineral or electrical devices in the water, which can be then introduced to the body by simple drinking it. Since the body is made of 70% of water, it makes a sense and it is most probably the greatest discovery related to health and aging of the people!